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Abstract. Decays of neutral D-mesons are considered phenomenologically without invoking any particular
models. Special attention is given to cascade decays with intermediate neutral kaons where coherent double-
flavour oscillations (CDFO) become possible. We show necessity and unique possibilities of experiments
on CDFO. They allow to relate with each other widths and masses of D-meson eigenstates, to separate

interference effects due to D0-D
0

mixing and/or Cabibbo-favoured vs. doubly-suppressed transitions. Such
experiments provide the only known ways to unambiguous model-independent measurements of all CP -
violating parameters and of Cabibbo-doubly-suppressed amplitudes, where the New Physics may have more
prominent manifestations. Similar experiments would be useful and interesting also for charged D-meson
decays to neutral kaons.

PACS. 11.30.Er Charge conjugation, parity, time reversal and other discrete symmetries – 13.25.Ft Decays
of charmed mesons – 14.40.Lb Charmed mesons

1 Introduction

Study of coherent double-flavour oscillations (CDFO) was
suggested some years ago[1] as a method for detailed inves-
tigations of properties of heavy mesons. The phenomenon
emerges if a secondary neutral kaon produced in decay
of a heavier neutral flavoured meson evolves so as to co-
herently continue the pre-decay evolution of the initial
heavy meson. It has been discussed in a number of pa-
pers [1-7], mainly for B-mesons. The method suggests
new tools to measure ∆m and ∆Γ for Bd[1,2] and Bs[5]
mesons, providing, in particular, a unique possibility to
find their signs. For experimental studies of CP -violation
it can present a practical way to measure CP -violating pa-
rameters in neutral B-meson decays unambiguously and
independently of any model-based assumptions[3,6,7]. De-
tailed discussion of these and other aspects of CDFO in
B-decays may be found in the review talk[8]. The problem
of ambiguities for parameters of CP -violation has recently
been discussed also in a large number of papers (see, e.g.,
[9-14]).

The present paper concerns with special features of
D-meson decays which appear to be, in some sense,
phenomenologically more general than B-meson ones.
D-meson physics has many interesting problems (see,
e.g., the detailed mini-review[15]). One of essential phe-
nomenological differences between B- and D-physics is
that any particular decay of B-mesons corresponds to a
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single-flavour transition, while D-mesons may have vari-
ous flavour transitions in the same decay mode. As noted
in[16,17] (see also[18]), specifics of neutral kaons as decay
products may generate unusual effects even in decays of
charged (and, surely, unmixed) D±-mesons. Their source
is that in such decays the Cabibbo-allowed and doubly-
suppressed transitions, which are just different flavour
transitions, become coherent. As a result, in particular,
the sought-for D-meson CP -violation effects become ob-
servationally mixed with the well-studied kaon ones.

In neutral D-decays the mixing of D0 and D
0

opens
possibility of CDFO and leads to additional non-standard
effects. So, in analogy with B-meson decays considered
earlier[1], we are interested now in cascade decays of the
type

D0(D
0
)→ XK0(K

0
) , (1)

with subsequent kaon decays; X is a neutral system with
definite values of spin and CP -parity. Our aim is to study
what physical information may be extracted from double-
time distributions over primary and secondary lifetimes
tD and tK .

Decays (1) are mainly induced by the quark transitions
c→ sW+ , c̄→ s̄W−, which produce meson transitions

D0 → K
0
, D

0 → K0 . (2)

Their final strangeness is the same as in decays of Bd, Bd
or Bs, Bs, studied in papers[1,5] respectively. Hence, if
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only transitions (2) existed we could apply ready expres-
sions from those papers to describe time distributions of
decays (1). However, transitions

D0 → K0 , D
0 → K

0
, (3)

with the “wrong” final strangeness, are also possible. Be-
ing induced by the quark cascades c → dW+ , W+ →
us̄ and charge conjugate, they are doubly Cabibbo-
suppressed. Nevertheless, when searching for very small
expected effects of D-meson mixing or CP -violation, the
interference of transitions (2) and (3) in the secondary
kaon decays should be taken into account. Moreover, the
doubly-suppressed transitions are a new kind of manifesta-
tions of electro-weak interactions, which may reveal some
New Physics; so their studies are of independent interest.
Therefore, we begin here with exact expressions and apply
smallness assumptions only later. (Note that in particular
decays of B-mesons the “wrong”-strangeness transitions
are practically absent being suppressed much stronger.)
At first sight, possibility of two transitions (2) and (3)
might essentially complicate time distributions, in com-
parison with B-mesons. We will see, however, that the
complications are, in essence, not very serious. Moreover,
they open new possibilities to extract physically interest-
ing information from experiments.

The further presentation goes as follows. In Section 2
we give general description of cascades initiated by de-
cays (1) with subsequent kaon decays. Physical content
of seemingly complicated expressions is first discussed in
Section 3 for the simplified case of exact CP -conservation.
For the realistic case of violated CP -parity we explain in
Section 4 that physical identification of neutral D-meson
eigenstates is important to prevent ambiguities both in
measuring CP -violation parameters and in separating am-
plitudes of flavour transitions (2) and (3). For illustration
we consider two kinds of labeling the eigenstates. In Sec-
tion 4 they are marked as being approximately CP -even or
CP -odd, while in Section 5 we label them by the heavier or
lighter mass. We show that in both cases the double-time
decay distributions of cascades (1) are necessary and suf-
ficient to relate together various properties of eigenstates
and eliminate ambiguities from measurements of physi-
cal quantities. To conclude we summarize the results and
briefly discuss possible strategies of experiments.

2 General formalism

Neutral D-mesons produce two eigenstates which we de-
note by D± (the meaning of such notations is discussed
below). For simplicity we assume CPT (but not CP ) in-
variance. Then the eigenstates may be written as

D± = pDD
0 ± qDD

0
; (4)

they have definite masses and widths; simple factors

e±(t) = exp(−im±t− Γ±t/2)

describe their time evolutions. The relations (4) are con-
sidered in many papers as definitions of the eigenstates
(for kaons, in a standard way, KS is assumed to be K+,
while KL is identified with K−). We emphasize, however,
that these definitions are only formal and cannot be con-
sidered as physical definitions of eigenstates. Since coeffi-
cients p, q are not assumed to be real, one may actually
redefine phases of states so, that any prescribed eigenstate
would look as D+ (for kaons one may consider KS and KL

as having the form of K− and K+ respectively, by chang-
ing phases of K0 and K

0
without changing any physical

quantities). The problem of true physical definitions for
the eigenstates will be considered below.

In analogy with[1], we start, say, with the pure D0-
state. During the time interval tD it evolves into the state

D(tD) =
1

2pD
[e+(tD)D+ + e−(tD)D−] . (5)

Decay (1) at the moment tD generates the kaon state (up
to normalization)

K(tD; 0) =
1

2pD
{[a(X)

+S e+(tD) + a
(X)
−S e−(tD)]KS

+ [a(X)
+L e+(tD) + a

(X)
−L e−(tD)]KL} , (6)

where a(X)
±S , a

(X)
±L are amplitudes of decays (1) with tran-

sitions D± → KS,L. Evolution during the time tK trans-
forms it into

K(tD; tK) =
1

2pD
{[a(X)

+S e+(tD) + a
(X)
−S e−(tD)]eS(tK)KS

+ [a(X)
+L e+(tD) + a

(X)
−L e−(tD)]eL(tK)KL} , (7)

with eS,L(t) = exp(−imS,Lt− ΓS,Lt/2) .
Let bSf and bLf denote amplitudes of decays

KS,L → f . (8)

Then the cascade, initiated by the pure D0-meson and
consisting of the primary decay (1) after lifetime tD and
the secondary kaon decay (8) after lifetime tK , has the
probability amplitude equal to

AD→Xf (tD; tK)

=
1

2pD
{[a(X)

+S e+(tD) + a
(X)
−S e−(tD)]bSf eS(tK)

+ [a(X)
+L e+(tD) + a

(X)
−L e−(tD)]bLf eL(tK)} . (9)

The amplitude for the similar cascade initiated by the pure
D

0
-meson is somewhat different. It equals

AD→Xf (tD; tK)

=
1

2qD
{[a(X)

+S e+(tD)− a(X)
−S e−(tD)]bSf eS(tK)

+ [a(X)
+L e+(tD)− a(X)

−L e−(tD)]bLf eL(tK)} . (10)
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Double-time distributions of these cascades may be pre-
sented in the form

WXf (tD; tK) = |AD→Xf (tD; tK)|2 ;

W
Xf

(tD; tK) = |AD→Xf (tD; tK)|2 . (11)

Their structure reminds that described in[1]. The distribu-
tions are not factorisable. As a function of one time (say,
of tD) they are linear combinations of four terms

exp(−Γ+tD) , exp[−(Γ+ + Γ−)tD/2] cos(∆mDtD) ,

exp(−Γ−tD) , exp[−(Γ+ + Γ−)tD/2] sin(∆mDtD) .
Coefficients depend on tK and, in their turn, are also linear
combinations of similar terms

exp(−ΓStK) , exp[−(ΓS + ΓL)tK/2] cos(∆mKtK) ,

exp(−ΓLtK) , exp[−(ΓS + ΓL)tK/2] sin(∆mKtK) .
Physically more transparent is a different way of describ-
ing the double-time distributions (11). They contain sev-
eral various contributions. First of all, there are non-
interfering contributions of 4 possible cascade branches
(corresponding to various combinations of subscripts in
D± → KS,L):

|2pD|2WXf
noint(tD; tK) = |2qD|2W

Xf

noint(tD; tK)

= |a(X)
+S bSf |2 exp(−Γ+tD − ΓStK)

+|a(X)
+L bLf |2 exp(−Γ+tD − ΓLtK)

+|a(X)
−S bSf |2 exp(−Γ−tD − ΓStK)

+|a(X)
−L bLf |2 exp(−Γ−tD − ΓLtK) . (12)

Then, there are single-interference contributions. They are
due to KS,L interference without D± interference or, vice
versa, due to interference ofD± withoutKS,L interference:

|2pD|2WXf
Kint(tD; tK) = |2qD|2W

Xf

Kint(tD; tK)

= 2Re[a(X)∗
+L a

(X)
+S b

∗
LfbSf exp(i∆mKtK)]

× exp[−Γ+tD − (ΓS + ΓL)tK/2] (13)

+ 2Re[a(X)∗
−L a

(X)
−S b

∗
LfbSf exp(i∆mKtK)]

× exp[−Γ−tD − (ΓS + ΓL)tK/2] ;

|2pD|2WXf
Dint(tD; tK) = −|2qD|2W

Xf

Dint(tD; tK)

= 2|bSf |2 Re[a(X)∗
−S a

(X)
+S exp(i∆mDtD)]

× exp[−(Γ+ + Γ−)tD/2− ΓStK ] (14)

+ 2|bLf |2 Re[a(X)∗
−L a

(X)
+L exp(i∆mDtD)]

× exp[−(Γ+ + Γ−)tD/2− ΓLtK ] .

And, at last, there are double-interference contributions,
which contain interference of both D± and KS,L:

|2pD|2WXf
DKint(tD; tK) = −|2qD|2W

Xf

DKint(tD; tK)

= 2{Re[a(X)∗
−L a

(X)
+S b

∗
LfbSf exp(i∆mDtD + i∆mKtK)]

+ Re[a(X)∗
+L a

(X)
−S b

∗
LfbSf exp(−i∆mDtD + i∆mKtK)]}

× exp[−(Γ+ + Γ−)tD/2− (ΓS + ΓL)tK/2] . (15)

In (13)–(15) we have used

∆mK = mL −mS , ∆mD = m− −m+ . (16)

Of course, we consider K-meson decay amplitudes bSf and
bLf as known from previous experiments.

Now, if Γ+ 6= Γ− and ∆mD 6= 0, eqs.(12)-(15) show
that the double-time distributions for the cascade (1), (8)
contain 10 terms with different time-dependence, which
can be separated from each other. They allow to measure
4 absolute values of decay amplitudes a(X)

±S , a
(X)
±L and 6

their relative phases. To end this section, we express those
eigenstate amplitudes in terms of flavour amplitudes cor-
responding to flavour transitions (2), (3):

2a(X)
+S =

pD
pK

a
(X)
DK +

qD
pK

a
(X)

DK
+
pD
qK

a
(X)

DK
+
qD
qK

a
(X)

DK
; (17)

2a(X)
−L =

pD
pK

a
(X)
DK −

qD
pK

a
(X)

DK
− pD
qK

a
(X)

DK
+
qD
qK

a
(X)

DK
; (18)

2a(X)
+L =

pD
pK

a
(X)
DK +

qD
pK

a
(X)

DK
− pD
qK

a
(X)

DK
− qD
qK

a
(X)

DK
; (19)

2a(X)
−S =

pD
pK

a
(X)
DK −

qD
pK

a
(X)

DK
+
pD
qK

a
(X)

DK
− qD
qK

a
(X)

DK
. (20)

Also useful may be other combinations of amplitudes. For
instance, transitions D → KS,L and D → KS,L can be
described by the amplitudes

aDS =
aDK
2pK

+
aDK
2qK

=
a+S + a−S

2pD
,

(21)
aDL =

aDK
2pK

− aDK
2qK

=
a+L + a−L

2pD
;

aDS =
aDK
2pK

+
aDK
2qK

=
a+S − a−S

2qD
,

(22)
aDL =

aDK
2pK

− aDK
2qK

=
a+L − a−L

2qD
.

Single-transition cases simplify the eigenstate ampli-
tudes. For the pure transition (2)

a
(X)
+S = −a(X)

−L , a
(X)
−S = −a(X)

+L ;
(23)

aDS = −aDL , aDS = aDL ;

while for the pure transition (3)

a
(X)
+S = a

(X)
−L , a

(X)
−S = a

(X)
+L ;

(24)
aDS = aDL , aDS = −aDL .

In the general case of two flavour transitions with CP -
violation, all four eigenstate (or flavour) amplitudes be-
come independent.
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3 The case of CP -conservation

Now we discuss physical meaning of the obtained expres-
sions in more detail. At first, for simplicity, we begin
with exact conservation of CP -parity which will be as-
sumed throughout the present section, both for D-mesons
and for kaons. Then, the eigenstates KS,L have definite
CP -parities equal to ±1 respectively. D-meson eigenstates
should also have definite CP -parities, and we suggest in
this section that the indices of D± just label CP -parities
±1 of the eigenstates.

In what follows we need to fix final states for decays
(1) and (8). As the first stage of the cascades we can use
decays

D0(D
0
)→ (π0, η, η′, ρ0, ω, φ) +K0(K

0
) . (25)

These final states may be produced by various decay
mechanisms but look similar in terms of the formalism
of the preceding section. Since we assume the exact CP -
conservation, all the final states (1) with kaons being in
one of their eigenstates have definite CP -parities equal
to (CP )X(CP )K(−1)SX , where (CP )X and SX are CP -
parity and spin of the system X. For decays (25) this
CP -parity is just opposite to the CP -parity of the corre-
sponding kaon eigenstate (CP )K . So, the above choice of
eigenstates D± leads, for all X in (25), to vanishing of two
amplitudes:

a
(X)
+S = a

(X)
−L = 0 (26)

(this can be seen also from eqs.(17)-(20)). As a result, all
single-interference contributions (13), (14) disappear. One
of double-interference contributions of (15) disappears as
well, but another survives.

This situation corresponds to existence of two inde-
pendent decay branches (instead of four in a general CP -
violating case)

D+ → XKL , D− → XKS ;KL,S → f ,

which can interfere only after the last decay (compare to
the similar consideration in[1]). The double-time distribu-
tions, WXf (tD; tK) and W

Xf
(tD; tK) as defined in (11),

consist each of two parts, either without interference of
branches or with both D and K interference:

4WXf
noint(tD; tK) = 4W

Xf

noint(tD; tK)

= |a(X)
+L bLf |2 exp(−Γ+tD − ΓLtK)

+ |a(X)
−S bSf |2 exp(−Γ−tD − ΓStK) ,

(27)

4WXf
DKint(tD; tK) = −4W

Xf

DKint(tD; tK)

= 2Re[a(X)∗
+L a

(X)
−S b

∗
LfbSf

× exp(−i∆mDtD + i∆mKtK)]}
× exp[−(Γ+ + Γ−)tD/2
−(ΓS + ΓL)tK/2] . (28)

One part is monotone (independent contributions of the
decay branches), another oscillates (interference of the
branches). These parts can be easily separated by con-
sidering sum or difference of WXf and W

Xf
.

The monotone terms determine D-meson eigenwidths
and absolute values of amplitudes |a(X)

+L |, |a
(X)
−S |. Note that

CP -conservation makes the D-meson indices of ampli-
tudes and lifetimes be directly and unambiguously related
to the corresponding kaon indices. This means that we
can easily determine CP -parity for any D-eigenstate. Of
course, this CP -parity is just the final state CP -parity
(we emphasize that it is single-valued for decays (25) with
kaon in an eigenstate, when CP -conservation is exact).
The situation is the same as in ascribing CP -parities to
KS and KL through their decays to 2π or 3π. Moreover,
this strict correlation between kaon and D-meson indices
means that the monotone terms directly determine rela-
tion between an eigenlifetime and CP -parity of the corre-
sponding eigenstate (this problem would not be so simple
in the general case of CP -violation; see following sections
for more details).

The oscillating term allows to determine the sign of
∆mD in respect to the known sign of ∆mK . In other
words, it determines which of the D-meson eigenstates,
CP -even or CP -odd, is heavier or lighter. The coeffi-
cient of the oscillating term checks consistency of abso-
lute values of the two non-vanishing amplitudes, while
the constant phaseshift of oscillations determines the rel-
ative phase of these amplitudes. Note that this double-
oscillation (in tD and tK) is, in essence, similar to sec-
ondary oscillations in kaon regeneration[19] which opened
possibility to determine the sign of ∆mK in respect to the
sign of the regeneration phase. We emphasize that the os-
cillating term allows to relate the heavier or lighter mass
to eigenstate CP -parities, but not directly to longer or
shorter lifetimes.

The above expressions have seemingly the same form
as for B-meson decays[1] where the final strangeness is
strictly correlated with the initial flavour. The real dif-
ference is the independence of amplitudes a(X)

−S and a
(X)
+L

if both transitions, (2) and (3), are present. As a result,
the two nonvanishing flavour transitions lead to |a(X)

+L | 6=
|a(X)
−S | .

There is one more consequence: complexities of the am-
plitudes a(X)

+L and a(X)
−S (or, equivalently, of the amplitudes

a
(X)
DK and a

(X)

DK
) may be, generally, different. This state-

ment looks rather evident for the final states π0K0(K
0
)

or ρ0K0(K
0
) which combine two isotopic-spin states. It is

less familiar but also true for such final states as, say,
ωK0(K

0
) which are different components of the same

isotopic-spin state. The reason is that the standard idea of
the decay amplitude having the same phase as the elastic
scattering amplitude for hadrons in the decay final state is
not always correct. It is true only if the final-state interac-
tion (FSI) cannot rescatter the particular state into some
other states. However, the D-meson mass is high enough,
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and any particular final state in D-decay does can rescat-
ter (most evidently, Kω may rescatter into K 3π with pi-
ons out of resonance).

Formally, this means that any particular final state in
decays (25) does not diagonalize the strong-interaction S-
matrix and does not produce a universal FSI-phase. The
amplitudes a(X)

DK and a(X)

DK
appear to be some linear combi-

nations of amplitudes for transitions into combined states
which diagonalize the strong S-matrix (and produce uni-
versal FSI-phases). Since the mechanisms of transitions
(2) and (3) are different, the two combinations are also dif-
ferent and, therefore, final-state interactions may generate
different phases for the two amplitudes. Thus, the factor
a

(X)∗
+L a

(X)
−S in (28) is real if only one of the transitions, (2)

or (3), is operative, but may be, generally, complex if the
both transitions are possible. Experimental determination
of such phase difference could be useful to reveal possible
decay mechanisms.

Let us discuss specific final states for the second stage
(8) of cascades. If we take f = 2π, then bL(2π) = 0 and
the double-time distributions (11) contain only one term,
expressed through |a(X)

−S |2. For f = 3π we have bS(3π) = 0.
The distributions, again, contain only one term, expressed
through |a(X)

+L |2. These two final states lead just to the sit-
uations discussed in[17]. Cascades with the two final states
allow one to measure absolute values of the corresponding
first-stage amplitudes, but not their relative phase. There-
fore, they do not allow to find amplitudes a(X)

DK and a
(X)

DK
unambiguously.

Semileptonic kaon decays with f = π∓l±ν(ν) have
|bLf | = |bSf |, and all three terms of eqs.(27), (28) appear
in the double-time distributions. Generally, they have dif-
ferent dependence on tD which might help to separate
them. In any case, the three terms have different depen-
dence on tK and may be separated for sure. Then, one can
determine here not only absolute values of a(X)

+L and a(X)
−S ,

but their relative phase as well. In other words, cascades
with semileptonic secondary decays allow one to unam-
biguously find both the absolute values and relative phase
of the amplitudes a(X)

DK and a
(X)

DK
for the primary decays

(25).

Thus, investigation of double-time distributions in cas-
cade decays (25), (8) may solve several important prob-
lems: it measures the D-meson eigenwidths Γ± and mass
difference ∆mD, relates eigenwidths and eigenmasses to
each other and to CP -parities of eigenstates, determines
amplitudes a

(X)

DK
and a

(X)
DK (together with their relative

phase) for the favoured and suppressed flavour transitions
(2), (3).

Earlier, in[1,3], we noticed that interesting problems
for B-mesons may be attacked also in single-time distri-
butions over tK (integrated over tB). Presence of two tran-
sitions in D-meson decays produces more of independent
amplitudes and makes single-time distributions less effi-
cient. Consider, e.g., contribution (28). After integration

over tD it contains the factor

cos(φ(Xf)
SL − αD +∆mKtK) , (29)

where φ(Xf)
SL is the relative phase of a(X)

−S bSf and a(X)
+L bLf ,

while
tan(αD/2) = xD ≡

2∆mD

Γ+ + Γ−
.

Single-time distributions in D-meson decays provide no
way to separate φ

(Xf)
SL from αD. Note, for comparison,

that the B-meson analog of φ(Xf)
SL has a definite value de-

pending on spin and CP -parity of the system X and on
the final state f in the secondary kaon decay (it is 0 or π
for semileptonic kaon decays). This is the reason why αD
cannot be measured model-independently in single-time
decay distributions for neutral D-mesons, while similar
distributions in decays of neutral B-mesons may be suffi-
cient to measure an analogous quantity αB [3].

If ∆mD and ∆Γ = Γ+ − Γ− are vanishing (or too
small to be measured) then the three terms in contribu-
tions (27), (28) have the same tD-dependence. Neutral D-
mesons in this situation are unmixed, and so, their decays
exactly correspond to such decays of charged D-mesons
as, e.g.,

D± → (π±, ρ±) +K0(K
0
) (30)

with subsequent semileptonic kaon decays. The three
terms in time distributions can still be separated by their
different tK-dependence. Note that the single-time distri-
bution in tK is sufficient here to separate and measure
amplitudes of transitions (2), (3) and their relative phase.
Thus, for unmixed D-mesons the secondary-decay dis-
tribution appears to be even more interesting than the
primary-decay one. For the above measurements one does
not need to study the large-tK region (tK ∼> τL). Neces-
sary is only the interval of tK up to about (10 − 15)τS ,
overlapping the KS,L interference region.

4 CP -parity eigenstates with CP -violation

To consider the general case which corresponds to vio-
lated CP -parity we return to exact expressions (12)-(15)
for double-time distributions. They contain 10 different
terms which, in principle, determine absolute values of 4
amplitudes a(X)

±S , a
(X)
±L and 6 their relative phases. To inter-

pret results of measurements, some physical identification
of eigenstates appears to be necessary. For clarification of
this point let us compare kaons and heavier mesons.

First of all, note that every meson eigenstate has 3
main characteristics: width, mass and CP -parity (at least,
approximate). Thus, we have 3 different ways of labeling
two eigenstates by 3 corresponding pairs: shorter or longer
lifetime; lighter or heavier mass; even or odd CP -parity.
Of course, these ways are physically equivalent, but the
equivalence can be realized only if one has experimental
methods to relate those 3 characteristics with each other.

The kaon eigenstates, KS,L, are usually identified and
labeled by their lifetimes, shorter or longer. Their pre-
vailing hadronic decay modes, 2π or 3π, determine their
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CP -parity, at least approximately. The mass difference of
KS and KL can be easily measured in semileptonic de-
cays. On this way, however, one cannot find the sign of
∆mK , i.e., to determine which of the states is heavier or
lighter. Only the specially invented (and rather compli-
cated) experiments allowed to measure the sign of mass
difference ∆mK and, thus, relate widths and masses of KS

and KL to each other ([19]; more detailed theoretical refer-
ences and compilation of experimental results see in[20]).
This provided possibility for unambiguous measuring the
kaon CP -violating parameters (note that the signs of φ+−
and φ00, the phases of η+− and η00, are measured only in
respect to the sign of ∆mK). As a result, we have now,
indeed, at least three equivalent ways of identifying KS,L:
by shorter or longer lifetime, by heavier or lighter mass,
by the (approximate) CP -parity.

The first of these ways cannot be applied at present
to D-meson eigenstates, D±, because of very small (and
yet unobserved) difference of eigenlifetimes (the same is
true for B-mesons). The absolute value of ∆m has been
measured forBd-mesons (results and references see in[21]),
there are suggestions how to do this for D-mesons as well.
In contrast to kaons, for B- and D-mesons the values of
|∆m| are expected to be noticeably higher than |∆Γ | (it
is definitely so for B-mesons). Therefore, a rather familiar
way in the current literature is to identify eigenstates, for
both B and D, as heavier and lighter (i.e., Bh,l and Dh,l).
On the other side, identification of eigenstates by their
approximate CP -parities was suggested in[1] forB-mesons
and may be applied to D-mesons as well. The real problem
is how to relate with each other the different approaches
to the B- and/or D-meson eigenstates. For B-mesons it
was discussed in[8]. Here we consider the situation for D-
mesons and the role of their cascade decays.

For definiteness, we use at the first stages of cascades
the same decays (25) as in the preceding section. At the
second stages we may also use, as before, the three typical
kinds of kaon decays: either semileptonic, or purely pionic
with 2 or 3 pions produced. As we have seen, only semilep-
tonic kaon decays could allow to measure the relative
phase of amplitudes for CP conserved. On the contrary,
with violated CP we might, principally, use any of the
three decay modes, since for all of them |bSf |, |bLf | 6= 0.
However, decays K0(K

0
) → 3π are still really useless

because of too small |bS(3π)|. When comparing decays

K0(K
0
) → 2π to semileptonic ones, the semileptonic de-

cays may appear experimentally more favourable, by the
same arguments as suggested in B-meson studies[3,7,8].
This problem, however, will not be discussed here anymore
since it requires detailed investigation for a particular de-
tector.

To discuss possible measuring procedures we begin
with a hypothetical suggestion that eigenwidths Γ+ and
Γ− are different enough, so that every term in expressions
(12)-(15) can be extracted and studied separately. We also
assume that all K-meson parameters and decay ampli-
tudes are known. Then, first of all, from monotone terms
of (12) we find two eigenwidths Γ± and four absolute val-

ues of amplitudes |a(X)
±S |, |a

(X)
±L |. Their kaon indices S,L are

fixed by the corresponding exponentials in tK . However,
this is not so for D-meson indices ±, which (contrary to
the CP -conservation case) are not unambiguously related
with kaon ones and not determined by tK-dependence.

Now we can specify possible meaning of the indices ±,
which has not been fixed yet, and define how to ascribe
them to amplitudes and eigenwidths. If CP -violation is
small indeed (or at least effectively), we may fix the in-
dices as showing approximate CP -parities of eigenstates.
Namely, in such a case there should be two larger and
two smaller amplitudes, and the indices ± of the decaying
eigenstates may be ascribed (for states X in decays (25))
so that larger amplitudes conserve CP -parity:

|a(X)
−S | > |a

(X)
+S | , |a

(X)
+L | > |a

(X)
−L | . (31)

Note that in presence of only one transition, (2) or (3),
we have |a(X)

±S | = |a(X)
∓L | (see eqs.(23),(24)), and only one

of the inequalities is independent.
At first sight, the two inequalities (31) look trivial even

for a general case, since in every pair of amplitudes one
of their absolute values is, as a rule, greater than an-
other. However, an essential and nontrivial property of
the inequalities is that the two larger amplitudes must
correspond to different eigenstates of both kaons and D-
mesons (in the expression (12) their monotone contribu-
tions should contain exponentials in tD and tK with “op-
posite” combinations of D-meson and kaon eigenwidths
in the exponents; this should and may be checked). Re-
ally, one pair of amplitudes with the same kaon index
(e.g., S) would be sufficient to ascribe indices ± to the D-
meson states. Then the corresponding tD-exponentials de-
termine, which of D-meson eigenwidths is Γ+ and which is
Γ−; in other words, this procedure relates eigenwidths and
approximate CP -parities of the eigenstates. After that the
indices for another pair of amplitudes are completely fixed,
and the second inequality (31) may appear true or false. In
the case of small CP -violation it should be true, of course.

If, however, the inequalities are inconsistent, then the
choice (31) is contradictory. In such a case the CP -
violation in transitions D± → KS,L could not be consid-
ered as effectively small (similar problems for B-mesons
are discussed in[1,3,8]). The approximate CP -parities of
the eigenstates D± would become mode-dependent, i.e.
the effective CP -parity for the same eigenstate would be
different when determined from transitions to KS or KL

(or some other final states with definite CP -parities). Sim-
ilar situation is well known for the space-parity violation
in weak interactions (recall, that the kaon parity is mode-
dependent: it is different when determined from decays
K → 2π or K → 3π).

Now, let us stick to a definite prescription of CP -
parities based on a particular decay mode. As the next
step we may use two terms of expression (13) to find unam-
biguously the phases arg(a(X)∗

+L a
(X)
+S ) and arg(a(X)∗

−L a
(X)
−S ).

Signs of these phases are determined in respect to the
known sign of ∆mK . Note that if only one of transitions,
(2) or (3), is operative then the two phases differ only by
the sign.
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If we use two terms of expression (14) to find
arg(a(X)∗

−S a
(X)
+S ) and arg(a(X)∗

−L a
(X)
+L ) we discover that their

signs could be measured only in respect to the yet un-
known sign of ∆mD. If, again, only one of transitions, (2)
or (3), worked, the situation would become definite due to
equality of ratios

a
(X)∗
−S a

(X)
+S

a
(X)∗
+L a

(X)
+S

=
a

(X)∗
−L a

(X)
+L

a
(X)∗
−L a

(X)
−S

(which would equal to -1 or +1 respectively for transitions
(2) or (3); see relations (23) and (24)). As a result, the
relative phase of two terms in expression (14) equals to the
relative phase of two terms in expression (13). This phase
may be measured from tK-dependence of the contribution
(13), the sign of the phase being determined in respect
to ∆mK . Then, tD-dependence of the contribution (14)
determines the sign of ∆mD in respect to the sign of the
(now known) phase, i.e. really in respect to the sign of
∆mK . Such determination can be achieved also when both
transitions are present, but not so easily, since then the
expressions (13) and (14) contain different phases. Note,
however, that the contributions (13), (14) are suppressed
if CP -violation is small in any sense.

Contributions (15) are, even by themselves, sufficient
to find the sign of ∆mD directly in respect to the sign of
∆mK . Indeed, inequalities (31) lead to

|a(X)∗
+L a

(X)
−S | > |a

(X)∗
−L a

(X)
+S | (32)

and allow to discriminate the two terms in (15); after that
the double-time dependence directly compares ∆mD to
∆mK and, in particular, determines their relative sign.
Phases arg(a(X)∗

−L a
(X)
+S ) and arg(a(X)∗

+L a
(X)
−S ) can be also de-

termined here. They check self-consistency of the proce-
dure since, surely, there should be

arg(a(X)∗
+L a

(X)
+S )− arg(a(X)∗

−S a
(X)
+S ) = arg(a(X)∗

+L a
(X)
−S ) ,

(33)
arg(a(X)∗

−L a
(X)
−S ) + arg(a(X)∗

−S a
(X)
+S ) = arg(a(X)∗

−L a
(X)
+S ) .

Even if the choice (31) is contradictory, we still may define
eigenstate CP -parities (i.e., ascribe the indices ± ) so to
provide the inequality (32).

The procedures described remind what was really done
in kaon studies. For each eigenstate they allow to relate
together various state’s properties: shorter or longer life-
time, positive or negative (approximate) CP -parity, and
heavier or lighter mass. Of course, their combination could
be fixed also by different (though equivalent) procedures.
We emphasize, however, that some physical procedures are
necessary and inevitable. Only with such procedures one
becomes able to measure flavour-transition amplitudes un-
ambiguously. We will see further in this section that the
same is true also for CP -violating parameters.

The physical necessity of CP -parity prescriptions for
eigenstates may be traced to the following simple reason.
Time dependence (single or double) is always related to
eigenstates. On the other side, flavour amplitudes (say,

a
(X)
DS , a

(X)

DS
) correspond to flavour states D and D, which

are linear combinations of eigenstates. D is conventionally
considered as

D ∼ D+ +D− .

This definition ofD is insensitive to accurate identification
of eigenstates. D, contrary, is proportional to the differ-
ence of the eigenstates,

D ∼ D+ −D− ,

and their interchange would change the sign of D. To cope
with the conventional relation D = CP (D) we should ap-
ply some procedure to define CP -parities of eigenstates,
and then subtract the CP -odd state from the CP -even
one. Without any procedure the state D, and various re-
lated physical quantities as well, can be determined only
up to the sign.

Let us discuss now a more realistic situation when
Γ+ = Γ− with available precision. In such a case the
four amplitudes a(X)

±S , a
(X)
±L cannot be determined unam-

biguously since several contributions have the same tD-
dependence (see, e.g. eqs.(12), (13)) and cannot be com-
pletely separated. The tD-dependence becomes the same
for every contribution if ∆mD is also too small and phys-
ical discrimination of eigenstates D± disappears at all.
However, tK-dependencies of different contributions are
still different, and partial separation of various contribu-
tions is still possible. Indeed, by comparing decays of ini-
tially pure states D0 and D

0
one could separate contribu-

tions (12), (13) on one side and (14), (15) on the other.
Then, by means of different tK-dependence we could dis-
criminate (13) from (12) and split (12) into two parts. In
the same manner (15) would be discriminated from (14),
which is also split into two parts. So, after all, we can split
decay time-distributions for D0 and D

0
only to 6 different

terms (instead of 10 for ∆ΓD 6= 0, ∆mD 6= 0). One may be
still able to find amplitudes of transitions (2), (3), but only
with additional simplifying assumptions (e.g., neglecting
CP -violation or describing it by some special models).

To understand the situation we return to the cascade
amplitudes of eqs.(9), (10). If ∆ΓD = ∆mD = 0, then
e−(tD) = e+(tD); mixing is absent, and the initial D-
meson state decays without evolution. Therefore, more ad-
equate are not the eigenstate amplitudes a(X)

±L , a
(X)
±S , but

their combinations a(X)
DS and a

(X)
DL determined by eqs.(21)

(or a(X)

DS
and a(X)

DL
; see eqs.(22)) which correspond to tran-

sitions D0 → KS,L and D
0 → KS,L without mixing of

initial D0 and/or D
0
. Amplitudes of every pair are still

coherent to each other, but not coherent to amplitudes
of another pair. Therefore, instead of 10 physical quanti-
ties we have now only 6 measurable quantities, which are
two absolute values and one relative phase in each of the
amplitude pairs (21), (22). Thus again, the 6 physically
meaningful quantities correspond to 6 separable terms in
double-time distributions (12)-(15) at ∆ΓD = ∆mD = 0
(when returning to the case of CP -conservation, we would
have additional relations a(X)

DS = −a(X)

DS
, a

(X)
DL = a

(X)

DL
for
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any X in decays (25), further diminishing the number of
independent physical quantities).

Note one more specific feature of cascade decays (1),
(8). Each of them contains two CP -violating parameters
which may be phenomenologically independent. Physi-
cally, they correspond to CP -violation in transitions (2)
and (3). Even rough estimates[16] show that CP -violation
in the suppressed transition (3) may appear greater than
in the favoured transition (2). It may also be very sensitive
to some New Physics.

As phenomenological CP -violating parameters for cas-
cades (25), (8) one can use, e.g., the ratios

η
(X)
DS =

a
(X)
+S

a
(X)
−S

, η
(X)
DL =

a
(X)
−L

a
(X)
+L

(34)

vanishing in the limit of exact CP -conservation (for both
D-meson and kaon decays). They have the same structure
as the standard parameters η00 and η+− for neutral kaon
decays: each of them is the ratio of two amplitudes, CP -
suppressed and CP -favoured, with the same final state
and different decaying eigenstates. If CP -parities of D-
meson eigenstates can be chosen so to satisfy inequalities
(31) then, for the final states (25), both parameters (34)
have absolute values smaller than unity. Inconsistency of
the inequalities (31) would imply that the absolute value is
less than unity for one of the parameters, but greater than
unity for another. In any case, CP -parities of eigenstates
can be chosen so to satisfy the condition (32). In terms of
the η-parameters this condition takes the simple form

|η(X)
DS η

(X)
DL | < 1 .

Though this inequality looks quite natural, we emphasize
that generally it may be nontrivial. Its correctness for a
particular system X in decay (1) may always be achieved
by a special choice of CP -properties of D-meson eigen-
states in this particular decay. Note, however, that such
special choice might depend on the system X if inequali-
ties (31) are inconsistent (recall, that inconsistency of (31)
would imply mode-dependence of CP -properties for D-
meson eigenstates).

One more possible way to describe CP -violation, ap-
propriate for any cascade (1), is to use parameters of the
kind

λ
(X)
DS =

qD
pD

a
(X)

DS

a
(X)
DS

, λ
(X)
DL =

qD
pD

a
(X)

DL

a
(X)
DL

. (35)

CP -violation may be measured by their deviation from
CP -conserving values, which are +1 or −1. For the final
states (25) the CP -conserving values are clearly seen from
the relations

λ
(X)
DS =

η
(X)
DS − 1

η
(X)
DS + 1

, λ
(X)
DL =

1− η(X)
DL

1 + η
(X)
DL

.

By using relations (17)-(22) one can easily express the
parameters (35) through flavour-transition amplitudes. In
the case of a single-flavour transition, (2) or (3), the two

parameters λ
(X)
DS and λ

(X)
DL differ only in sign; they are

proportional to the ratio of the corresponding flavour-
transition amplitudes for D and D. In the presence of
both transitions (2) and (3) we still can describe their
CP -properties by separate parameters

λ
(X)

DK
=
qD
pD

qK
pK

aDK
aDK

, λ
(X)
DK =

qD
pD

pK
qK

aDK
aDK

for each transition (just such parameters were used in our
papers on B-mesons[1,3,5,6,8]). If CP -violation in the
two transitions is the same (i.e. λ(X)

DK
= λ

(X)
DK), then, again,

we have λ(X)
DS = −λ(X)

DL .
In difference with the CP -violating parameters (34),

parameters (35) do not contain explicitly D-meson eigen-
states. However, they use the states D and D. Therefore,
as explained above, they also cannot be determined un-
ambiguously without some CP -prescription for D-meson
eigenstates.

Such property is not unique for decays into neutral
kaons. Consider, e.g., decays

D0(D
0
)→ F (36)

with amplitudes a(F )
D , a

(F )

D
; here F is some final state with

a definite CP -parity 1. The time distributions of decays
(36) contain terms proportional to

Reλ(F )
D sinh[(Γ+ − Γ−)t]

and (37)

Imλ(F )
D sin[(m+ −m−)t] ,

where

λ
(F )
D =

qD
pD

a
(F )

D

a
(F )
D

. (38)

Expressions (37) show that the sign of Reλ can be de-
termined experimentally only if we know relation between
eigenwidths and (approximate) CP -parities of eigenstates,
while the sign of Imλ needs relation between eigenmasses
and CP -parities. An essential point is that in practice we
cannot find these relations in decays (36) themselves (es-
pecially for masses), while cascade decays (1), (8) with
intermediate neutral kaons may provide such possibilities.

5 Mass eigenstates with CP -violation

In preceding sections we have demonstrated that identifi-
cation of D-eigenstates by their CP -parities, exact or ap-
proximate, requires two procedures for complete descrip-
tion of the states. One of them uses monotone (in tD and
tK) terms of decay distributions and relates eigenwidths
to the corresponding CP -parity eigenstates. Another pro-
cedure, by means of double oscillations (again, in tD and

1 Really we briefly repeat here a similar discussion of[3] for
B-mesons.
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tK), relates eigenmasses to the eigenstates and determines
which of them is heavier or lighter.

However, we have mentioned above that a rather fa-
miliar approach in the current literature is to identify
eigenstates of heavy flavoured neutral mesons from the
beginning by their masses, as heavier (e.g., Dh) or lighter
(e.g., Dl) states. In such notations the kaon nomenclature
would look as Kh, Kl instead of KL, KS correspondingly.
Evidently, this approach is meaningful only if ∆m can be
measured, even if ∆Γ is too small for measuring. In this
section we will consider D-meson eigenstates as identified
by their masses.

Formally, cascade amplitudes and double-time distri-
butions with such identification of eigenstates can be eas-
ily obtained from eqs. (9), (10) and (12)-(15), respectively.
Of course, meaning of the indices ± should be defined
differently than in the preceding section. If we take, by
definition, ∆mD > 0, then according to (16) we need to
identify the states as

D− ≡ Dh , D+ ≡ Dl (39)

(similar to kaons). Therefore, we should rewrite eigenstate
amplitudes as

a
(X)
−L → a

(X)
hL , a

(X)
−S → a

(X)
hS ,

(40)
a

(X)
+L → a

(X)
lL , a

(X)
+S → a

(X)
lS .

Here the first subscripts correspond to initial D-meson
eigenstates being heavier or lighter, while the second ones
are for final kaon eigenstates, Long- or Shortliving.

At first sight, the above change being supplemented by
the substitution

Γ− → Γh , Γ+ → Γl

should be quite sufficient. The situation, however, is not
so simple. The real problem, as before, is how to con-
struct procedures that determine, which of phenomeno-
logical amplitudes is which, and allow to relate physical
eigenwidths and CP -properties with the mass labels of
eigenstates.

To discuss this problem we, again, begin with a hy-
pothetical assumption that every particular contribution
in double-time distributions (12)-(15) can be separated
experimentally by detailed study of double-time distribu-
tions for initial D- and D-states. This assumes also that
both ∆mD and ∆ΓD are large enough to be measurable.

First of all, we separate terms having monotone be-
haviour in tK (see eqs.(12), (14)). They correspond to D-
meson decays with production of KS or KL, without their
interference. Both cases lead to tD-dependence of the form

|a1|2 exp(−Γ1tD) + |a2|2 exp(−Γ2tD)
+2|a1a2| cos(φ12 +∆mDtD) exp[−(Γ1 + Γ2)tD/2]. (41)

Here a1 and a2 are two amplitudes (e.g., a(X)
hL , a

(X)
lL for

terms with the factor exp(−ΓLtK) in eqs.(12), (14)), φ12

is their relative phase; Γ1, Γ2 stay for Γh and/or Γl.

We see that the distribution (41), even having been
ideally measured, would allow to determine the two am-
plitudes a1 and a2 (up to complex conjugation, because of
possible change a1 → a∗2, Γ1 → Γ2) and relate them with
eigenwidths Γ1, Γ2, but could not show which of them is
for heavier or lighter D-meson eigenstates. A formal rea-
son is that the contributions (12) and (14) have symmetry
properties: they do not change under substitution, e.g.,
a

(X)
+L → a

(X)∗
−L , Γ+ → Γ− (and/or similar for subscript S),

with ∆mD staying unchanged. Thus, interchange of states
D+ and D− (i.e. of states Dl and Dh) without changing
∆mD could not have any influence on contributions (12)
and (14).

So, the tK-monotone contributions in decay time dis-
tributions cannot discriminate the two eigenstates, heav-
ier and lighter: they cannot relate the measured widths Γ1

and Γ2 to heavier or lighter eigenstates and cannot relate
amplitudes to the corresponding eigenstate transitions. Of
course, study of such terms would not be, nevertheless,
useless: it can determine absolute values of all four am-
plitudes and two of their relative phases (one may note,
however, that the phases can be determined in this way
only up to signs).

Contributions (13), oscillating in tK without oscilla-
tions in tD, determine more of relative phases, but can-
not yet, by themselves, distinguish amplitudes for initial
states Dh or Dl. The reason is that these contributions
also satisfy a symmetry property preventing, again, dis-
crimination of D± (i.e. of Dh, Dl): they do not change
under substitution a

(X)
+L → a

(X)
−L , a

(X)
+S → a

(X)
−S , Γ+ → Γ−.

This symmetry is different from one discussed above. It
works, nevertheless, for contributions (12) as well, but not
for contributions (14). Therefore, contributions (13) to-
gether with (12) and (14) could, in principle, distinguish
the states Dh and Dl and relate them to amplitudes and
eigenwidths. Note, however, that the contributions (13),
(14) vanish in the case of CP -conservation and, thus, are
expected to be small (this brief discussion may be directly
compared with a similar discussion in the preceding sec-
tion).

The situation can be really resolved by contributions
(15), oscillating in both tK and tD. These contributions
by themselves violate the both above symmetries. Here
the interchange of amplitudes and widths for h- and l-
states would require simultaneous change of the relative
sign between the known terms proportional to ∆mD and
∆mK . Therefore, here at last we can determine which two
of four amplitudes correspond to decays of, say, Dh. After
that, all the relative phases of the four amplitudes be-
come unambiguous as well. Eigenwidths have been earlier
related to definite amplitudes which now become speci-
fied as h- and l-amplitudes. So, due to contributions (15)
the widths can be definitely related to h- and l-states.
The CP -parity (exact or approximate) of eigenstates be-
comes also determined just by contributions (15), through
relation between |a(X)

lL a
(X)
hS | and |a(X)

lS a
(X)
hL | which should

correspond to inequality (32) (without substitution (40)).
When discussing CP -violation in terms of Dh, Dl the

parameters (34) are not convenient, since without any spe-
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cial model one does not know a priori which of amplitudes,
e.g. a(X)

hS or a(X)
lS , is larger in absolute value. In contrast,

the parameters (35) are quite appropriate. One should
note, however, that relations (17)-(22) between flavour
and eigenstate amplitudes were written for the identifi-
cation of D-eigenstates by their CP -parity (at least, in
one pair of transitions D± → KS or D± → KL). The
substitutions (39), (40) should not be applied to them
directly, before the amplitudes having been identified as
described above in this section. Therefore, without us-
ing double-flavour oscillations one cannot unambiguously
extract flavour-transition amplitudes from distributions
(12)-(15) and, as a result, cannot unambiguously deter-
mine parameters (35) (and (38) as well). Similar discus-
sions for B-mesons see in[3,6–8].

We emphasize once more that there is no direct way
to relate eigenwidths (even if measured) to a heavier (or
lighter) eigenmass. The widths may be directly related
only to amplitudes. The role of the coherent double-flavour
oscillations is to relate the amplitudes (and, hence, the
widths as well) to the mass eigenstates. The same note
is true for CP -properties of the eigenstates. CP -violating
parameters cannot be determined unambiguously without
using the double-flavour oscillations.

Let us briefly discuss the problem of flavour ampli-
tudes for transitions (2), (3) with mass labeling of D-
meson eigenstates. Formally, they can be easily expressed
through eigenstate amplitudes by eqs. (17)-(22). However,
D-meson subscripts ± in these relations correspond just to
CP -properties of eigenstates and should not be changed
according to substitution (39). Therefore, the flavour am-
plitudes can be determined unambiguously only when (ap-
proximate) CP -parities of the mass eigenstates have been
measured, as can be done in double-flavour oscillations.
The reason is the same as discussed in the preceding sec-
tion: to construct correct flavour states (D in the conven-
tional approach) we need to know which of states, Dh or
Dl, is (approximately) CP -even and/or CP -odd.

6 Concluding remarks. Strategy of
measurements

In previous sections we have shown that coherent double-
flavour oscillations suggest possibilities to solve various
problems in D-meson physics. To understand which ex-
periment may study this or that problem, we begin this
section with estimating expected values of different effects.

The Minimal Standard Model leads to a natural esti-
mate ∣∣∣∣∣∣ a

(X)
DK

a
(X)

DK

∣∣∣∣∣∣ ≈
∣∣∣∣∣∣ a

(X)

DK

a
(X)

DK

∣∣∣∣∣∣ ∼ O(tan2 θC) ,

with tan2 θC ≈ 0.05, where θC is the Cabibbo angle. This
expectation corresponds to known experimental data[21]
and, due to relations (17)-(22), leads to boundaries

|φ(Xf)
SL | ∼< O(tan2 θC)

for the phase difference φ
(Xf)
SL in expression (29). The

largest value of φ(Xf)
SL , admissible by this estimate, would

be achieved at the relative phase of a(X)
DK and a

(X)

DK
equal

to ±π/2. Considerations based on final state interactions
tend to change this phase and reduce φ(Xf)

SL even stronger.
For the quantity αD, appearing in single-time distribu-

tions together with φ
(Xf)
SL (see expression (29)), the Min-

imal Standard Model gives very small expected values,
typically < 10−3. However, various hypotheses on New
Physics may lead to larger values, up to | tanαD| = |xD| ∼
0.1. The present experimental data[21] still give a rather
weak limitation

| tanαD| < 0.09 ,

and cannot exclude such New Physics. So αD could be of
the same order as φ(Xf)

SL or even higher, and the problem
of their separation looks serious.

Distributions on the secondary-decay time tK for de-
cays (25) cannot, by themselves, separate φ(Xf)

SL and αD.
This means that they cannot determine amplitudes a(X)

DK

and a
(X)

DK
and/or mass difference ∆mD (the same is true

for using secondary decays of only KS or KL, or for total
yields of decay products integrated over tK). One could,
however, try to interpret experimental results by apply-
ing additional hypotheses which should be checked. If, for
instance,

|αD| À |φ(Xf)
SL | ,

then the constant phaseshifts for oscillating terms in all
decays (25) should be the same; | tanαD| should coincide
with |xD| measured in semileptonic decays of neutral D-
mesons (note that semileptonic decays are insensitive to
the sign of xD). If

|αD| ¿ |φ(Xf)
SL | ,

then useful would be comparison with similar phase shifts
in the charged D-meson decays (30), having no mixing
(these decays are of independent interest as well). Also
useful could be studies of decays of neutral or charged D-
mesons to charged kaons. They measure absolute values
of amplitudes isotopically related to amplitudes of transi-
tions (2), (3) for decays (25).

More accurate separation between different interfer-
ence effects, mixing and/or suppressed vs. favoured tran-
sitions, can be achieved only by invoking information on
double-time distributions. Of course, detailed studies of
double-time oscillations require very high experimental
statistics. One can imagine, however, that they would not
be necessary. For example, comparison of tK-distributions
in various tD-regions (say, tD ∼< τD and tD ∼> τD) could
be sufficient at relatively moderate statistics. Treatment
of the corresponding results could be simplified by taking
into account the smallness of ∆mD and ∆ΓD. To achieve
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more definite judgment on experimental availability of
such studies one needs various Monte Carlo simulations.
In any case, necessary CP -parities of heavier and lighter
D-eigenstates (if they are not mode-dependent) could be
measured in special experiments, and used afterwards in
all other studies (just as done for kaons).

In summary, we have shown that the phenomenon
of coherent double-flavour oscillations (CDFO) in cas-
cade decays of heavy neutral flavoured mesons into in-
termediate neutral kaons is very useful to study heavy
mesons and their decays. The phenomenon reveals itself
mainly in double-time decay distributions (over the pri-
mary and secondary decay times). It gives, first of all, pos-
sibility to determine CP -parities (exact or approximate)
of the heavy meson eigenstates, suggests new approaches
to investigation of CP -violation and (especially for D-
mesons) of suppressed flavour-transition amplitudes. It
could also check consistency of various assumptions on the
mesons.

On the other hand, CDFO appears to be inevitable
to solve some problems unambiguously and in a model-
independent way. They are, in particular, such impor-
tant problems as the unambiguous measurement of CP -
violating parameters and/or relation of the meson eigen-
widths and eigenmasses. Another problem, specific for D-
mesons, is study of doubly Cabibbo-suppressed transitions
which are coherent with Cabibbo-favoured transitions in
decays (of both neutral and charged D-mesons) to final
states with neutral kaons. Such studies are very inter-
esting by itself and may give evidence for New Physics,
independent of (and additional to) CP -violation stud-
ies. Our main point is that extraction of both sup-
pressed amplitudes and CP -violating parameters for neu-
tral D-mesons appears impossible without investigation
of CDFO. To separate effects of D-meson mixing and in-
terference of suppressed vs. favoured amplitudes, such in-
vestigations for D-mesons, in contrast to B-mesons, re-
quire to know double-time decay distributions (i.e,. over
both primary and secondary decay times). For charged D-
mesons one should also measure the secondary decay time
distributions to achieve unambiguous extraction of sup-
pressed amplitude in decays with neutral kaon product-
ion.
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